Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.531
1.
Sci Adv ; 10(19): eadj9911, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728406

During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.


GABAergic Neurons , Interneurons , Somatosensory Cortex , Animals , Interneurons/metabolism , Interneurons/physiology , Interneurons/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , GABAergic Neurons/cytology , Somatosensory Cortex/physiology , Somatosensory Cortex/metabolism , Somatosensory Cortex/cytology , Mice , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Parvalbumins/metabolism
2.
Addict Biol ; 29(5): e13403, 2024 May.
Article En | MEDLINE | ID: mdl-38735880

Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl-experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 h abstinence, VTA nuclei were isolated and prepared for sequencing on the 10× platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signalling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signalling. In glutamate neurons, we found enrichment of genes involved in cholinergic signalling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulated transcriptional repressor Bcl6, and upregulated transcription factor Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signalling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA that serves as the foundation for future mechanistic studies.


Analgesics, Opioid , Fentanyl , Mice, Inbred C57BL , Ventral Tegmental Area , Animals , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Mice , Fentanyl/pharmacology , Male , Female , Analgesics, Opioid/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Self Administration , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Neurons/drug effects , Neurons/metabolism , Opioid-Related Disorders/genetics
3.
Acta Neuropathol ; 147(1): 80, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714540

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


GABAergic Neurons , Interneurons , Tuberous Sclerosis , Interneurons/pathology , Interneurons/metabolism , Tuberous Sclerosis/pathology , Tuberous Sclerosis/metabolism , Humans , GABAergic Neurons/pathology , GABAergic Neurons/metabolism , Male , Female , Median Eminence/pathology , Median Eminence/metabolism , Somatostatin/metabolism , Child , Child, Preschool , Receptors, GABA-A/metabolism , Adolescent , Ganglionic Eminence
4.
J Mol Neurosci ; 74(2): 50, 2024 May 02.
Article En | MEDLINE | ID: mdl-38693434

Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.


Aneuploidy , GABAergic Neurons , Oxidative Stress , Phenotype , Animals , GABAergic Neurons/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Seizures/genetics , Seizures/metabolism , Drosophila melanogaster/genetics , Brain/metabolism , Drosophila/genetics
5.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38658137

The primary motor cortex (M1) integrates sensory and cognitive inputs to generate voluntary movement. Its functional impairments have been implicated in the pathophysiology of motor symptoms in Parkinson's disease (PD). Specifically, dopaminergic degeneration and basal ganglia dysfunction entrain M1 neurons into the abnormally synchronized bursting pattern of activity throughout the cortico-basal ganglia-thalamocortical network. However, how degeneration of the midbrain dopaminergic neurons affects the anatomy, microcircuit connectivity, and function of the M1 network remains poorly understood. The present study examined whether and how the loss of dopamine (DA) affects the morphology, cellular excitability, and synaptic physiology of Layer 5 parvalbumin-expressing (PV+) cells in the M1 of mice of both sexes. Here, we reported that loss of midbrain dopaminergic neurons does not alter the number, morphology, and physiology of Layer 5 PV+ cells in M1. Moreover, we demonstrated that the number of perisomatic PV+ puncta of M1 pyramidal neurons as well as their functional innervation of cortical pyramidal neurons were not altered following the loss of DA. Together, the present study documents an intact GABAergic inhibitory network formed by PV+ cells following the loss of midbrain dopaminergic neurons.


Dopaminergic Neurons , Interneurons , Mesencephalon , Mice, Transgenic , Motor Cortex , Parvalbumins , Animals , Parvalbumins/metabolism , Motor Cortex/metabolism , Dopaminergic Neurons/metabolism , Interneurons/metabolism , Male , Female , Mesencephalon/metabolism , GABAergic Neurons/metabolism , Mice, Inbred C57BL , Mice , Neural Inhibition/physiology
6.
Nature ; 629(8011): 384-392, 2024 May.
Article En | MEDLINE | ID: mdl-38600385

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Cell Lineage , GABAergic Neurons , Homeodomain Proteins , Mosaicism , Prosencephalon , Transcription Factors , Humans , Prosencephalon/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Lineage/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Neurons/cytology , Neurons/metabolism , Female , Hippocampus/cytology , Clone Cells/cytology , Clone Cells/metabolism , Single-Cell Analysis , Parietal Lobe/cytology , Alleles , Neocortex/cytology , Transcriptome
7.
J Neurodev Disord ; 16(1): 21, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658850

BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS: SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS: The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS: Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.


Amino Acid Metabolism, Inborn Errors , Developmental Disabilities , Induced Pluripotent Stem Cells , Succinate-Semialdehyde Dehydrogenase , Adolescent , Animals , Child , Child, Preschool , Female , Humans , Male , Mice , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/physiopathology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/metabolism , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Induced Pluripotent Stem Cells/metabolism , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics
8.
Nat Commun ; 15(1): 2891, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570514

Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli. Inhibition of this pathway during NP increased interaction and bout length with familiar social stimuli, while activation reduced interaction and bout length with novel social stimuli via decreasing DA neurotransmission. These data indicate interest towards novel social stimuli is encoded by mesolimbic DA which is dynamically regulated by an IPN→LDTg circuit to control NP.


Dopamine , Interpeduncular Nucleus , Mice , Animals , Dopamine/metabolism , Tegmentum Mesencephali/metabolism , Interpeduncular Nucleus/metabolism , Synaptic Transmission , GABAergic Neurons/metabolism
9.
Transl Psychiatry ; 14(1): 197, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670959

Alcohol use and anxiety disorders occur in both males and females, but despite sharing similar presentation and classical symptoms, the prevalence of alcohol use disorder (AUD) is lower in females. While anxiety is a symptom and comorbidity shared by both sexes, the common underlying mechanism that leads to AUD and the subsequent development of anxiety is still understudied. Using a rodent model of adolescent intermittent ethanol (AIE) exposure in both sexes, we investigated the epigenetic mechanism mediated by enhancer of zeste 2 (EZH2), a histone methyltransferase, in regulating both the expression of activity-regulated cytoskeleton-associated protein (Arc) and an anxiety-like phenotype in adulthood. Here, we report that EZH2 protein levels were significantly higher in PKC-δ positive GABAergic neurons in the central nucleus of amygdala (CeA) of adult male and female rats after AIE. Reducing protein and mRNA levels of EZH2 using siRNA infusion in the CeA prevented AIE-induced anxiety-like behavior, increased H3K27me3, decreased H3K27ac at the Arc synaptic activity response element (SARE) site, and restored deficits in Arc mRNA and protein expression in both male and female adult rats. Our data indicate that an EZH2-mediated epigenetic mechanism in the CeA plays an important role in regulating anxiety-like behavior and Arc expression after AIE in both male and female rats in adulthood. This study suggests that EZH2 may serve as a tractable drug target for the treatment of adult psychopathology after adolescent alcohol exposure.


Anxiety , Central Amygdaloid Nucleus , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Ethanol , Animals , Male , Female , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Central Amygdaloid Nucleus/metabolism , Central Amygdaloid Nucleus/drug effects , Rats , Anxiety/metabolism , Anxiety/genetics , Ethanol/pharmacology , Disease Models, Animal , Alcoholism/genetics , Alcoholism/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Rats, Sprague-Dawley , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
10.
PLoS One ; 19(4): e0300544, 2024.
Article En | MEDLINE | ID: mdl-38656972

Obesity is a major global health epidemic that has adverse effects on both the people affected as well as the cost to society. Several anti-obesity drugs that target GLP-1 receptors have recently come to the market. Here, we describe the effects of tesofensine, a novel anti-obesity drug that acts as a triple monoamine neurotransmitter reuptake inhibitor. Using various techniques, we investigated its effects on weight loss and underlying neuronal mechanisms in mice and rats. These include behavioral tasks, DeepLabCut videotaped analysis, electrophysiological ensemble recordings, optogenetic activation, and chemogenetic silencing of GABAergic neurons in the Lateral Hypothalamus (LH). We found that tesofensine induces a greater weight loss in obese rats than lean rats, while differentially modulating the neuronal ensembles and population activity in LH. In Vgat-ChR2 and Vgat-IRES-cre transgenic mice, we found for the first time that tesofensine inhibited a subset of LH GABAergic neurons, reducing their ability to promote feeding behavior, and chemogenetically silencing them enhanced tesofensine's food-suppressing effects. Unlike phentermine, a dopaminergic appetite suppressant, tesofensine causes few, if any, head-weaving stereotypy at therapeutic doses. Most importantly, we found that tesofensine prolonged the weight loss induced by 5-HTP, a serotonin precursor, and blocked the body weight rebound that often occurs after weight loss. Behavioral studies on rats with the tastant sucrose indicated that tesofensine's appetite suppressant effects are independent of taste aversion and do not directly affect the perception of sweetness or palatability of sucrose. In summary, our data provide new insights into the effects of tesofensine on weight loss and the underlying neuronal mechanisms, suggesting that tesofensine may be an effective treatment for obesity and that it may be a valuable adjunct to other appetite suppressants to prevent body weight rebound.


Anti-Obesity Agents , Bridged Bicyclo Compounds, Heterocyclic , GABAergic Neurons , Obesity , Animals , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Rats , Mice , Anti-Obesity Agents/pharmacology , Male , Obesity/drug therapy , Obesity/metabolism , Feeding Behavior/drug effects , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Transgenic , Weight Loss/drug effects , Rats, Sprague-Dawley
11.
J Neurosci ; 44(19)2024 May 08.
Article En | MEDLINE | ID: mdl-38565288

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Mice, Inbred C57BL , Signal Transduction , TRPM Cation Channels , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Mice , TRPM Cation Channels/metabolism , Signal Transduction/physiology , Brain Ischemia/metabolism , CA1 Region, Hippocampal/metabolism , Receptors, GABA-A/metabolism , Hippocampus/metabolism , Neural Inhibition/physiology , GABAergic Neurons/metabolism , Heart Arrest/complications , Heart Arrest/metabolism
12.
Neurosci Biobehav Rev ; 161: 105651, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579901

GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.


Brain , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/metabolism , Humans , Animals , Brain/growth & development , Brain/metabolism , Receptors, GABA-A/metabolism , GABAergic Neurons/physiology , GABAergic Neurons/metabolism
13.
Nat Neurosci ; 27(5): 862-872, 2024 May.
Article En | MEDLINE | ID: mdl-38528203

The mammalian telencephalon contains distinct GABAergic projection neuron and interneuron types, originating in the germinal zone of the embryonic basal ganglia. How genetic information in the germinal zone determines cell types is unclear. Here we use a combination of in vivo CRISPR perturbation, lineage tracing and ChIP-sequencing analyses and show that the transcription factor MEIS2 favors the development of projection neurons by binding enhancer regions in projection-neuron-specific genes during mouse embryonic development. MEIS2 requires the presence of the homeodomain transcription factor DLX5 to direct its functional activity toward the appropriate binding sites. In interneuron precursors, the transcription factor LHX6 represses the MEIS2-DLX5-dependent activation of projection-neuron-specific enhancers. Mutations of Meis2 result in decreased activation of regulatory enhancers, affecting GABAergic differentiation. We propose a differential binding model where the binding of transcription factors at cis-regulatory elements determines differential gene expression programs regulating cell fate specification in the mouse ganglionic eminence.


Embryonic Development , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins , Transcription Factors , Animals , Mice , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Embryonic Development/physiology , Enhancer Elements, Genetic/genetics , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Cell Differentiation/physiology , Interneurons/metabolism , Interneurons/physiology , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Neurogenesis/physiology , Nerve Tissue Proteins
14.
Curr Biol ; 34(8): 1646-1656.e4, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38518777

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Arcuate Nucleus of Hypothalamus , Brain Stem , Feeding Behavior , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/physiology , Animals , Brain Stem/physiology , Brain Stem/metabolism , Mice , Male , Feeding Behavior/physiology , GABAergic Neurons/physiology , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Eating/physiology , Mice, Inbred C57BL , Female
15.
Cell Rep ; 43(4): 113970, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38512868

To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.


Neurovascular Coupling , Animals , Mice , Neurovascular Coupling/physiology , Humans , Neurons/metabolism , Neurons/physiology , Vibrissae/physiology , Mice, Inbred C57BL , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Male , Cerebral Cortex/physiology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Nitric Oxide Synthase Type I/metabolism
16.
Curr Biol ; 34(7): 1453-1468.e6, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38484733

Itch encompasses both sensory and emotional dimensions, with the two dimensions reciprocally exacerbating each other. However, whether a shared neural circuit mechanism governs both dimensions remains elusive. Here, we report that the anterior insular cortex (AIC) is activated by both histamine-dependent and -independent itch stimuli. The activation of AIC elicits aversive emotion and exacerbates pruritogen-induced itch sensation and aversion. Mechanistically, AIC excitatory neurons project to the GABAergic neurons in the dorsal bed nucleus of the stria terminalis (dBNST). Manipulating the activity of the AIC → dBNST pathway affects both itch sensation and itch-induced aversion. Our study discovers the shared neural circuit (AIC â†’ dBNST pathway) underlying the itch sensation and aversion, highlights the critical role of the AIC as a central hub for the itch processing, and provides a framework to understand the neural mechanisms underlying the sensation and emotion interaction.


Insular Cortex , Sensation , Humans , Sensation/physiology , GABAergic Neurons/metabolism , Histamine/adverse effects , Histamine/metabolism , Pruritus/chemically induced
17.
Nature ; 627(8004): 604-611, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448582

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Aging , Astrocytes , Neurons , Prefrontal Cortex , Schizophrenia , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Aging/metabolism , Aging/pathology , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/pathology , Cholesterol/metabolism , Cognition , GABAergic Neurons/metabolism , Genetic Predisposition to Disease , Glutamine/metabolism , Health , Individuality , Neural Inhibition , Neuronal Plasticity , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Single-Cell Gene Expression Analysis , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Synaptic Membranes/chemistry , Synaptic Membranes/metabolism
18.
Neurobiol Dis ; 194: 106482, 2024 May.
Article En | MEDLINE | ID: mdl-38522590

A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.


Epilepsy, Temporal Lobe , Animals , Epilepsy, Temporal Lobe/pathology , Nucleus Accumbens/metabolism , Parvalbumins/metabolism , Seizures/pathology , Hippocampus/pathology , GABAergic Neurons/metabolism , Kainic Acid/toxicity , Disease Models, Animal
19.
Neuroscience ; 546: 63-74, 2024 May 14.
Article En | MEDLINE | ID: mdl-38537894

GABAergic interneurons and perineuronal nets (PNNs) are important regulators of plasticity throughout life and their dysfunction has been implicated in the pathogenesis of several neuropsychiatric conditions, including autism spectrum disorders (ASD). PNNs are condensed portions of the extracellular matrix (ECM) that are crucial for neural development and proper formation of synaptic connections. We previously showed a reduced expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of adult mice lacking the Engrailed2 gene (En2-/- mice), a mouse model of ASD. Since alterations in PNNs have been proposed as a possible pathogenic mechanism in ASD, we hypothesized that the PNN dysfunction may contribute to the neural and behavioral abnormalities of En2-/- mice. Here, we show an increase in the PNN fluorescence intensity, evaluated by Wisteria floribunda agglutinin, in brain regions involved in social behavior and somatosensory processing. In addition, we found that En2-/- mice exhibit altered texture discrimination through whiskers and display a marked decrease in the preference for social novelty. Our results raise the possibility that altered expression of PNNs, together with defects of GABAergic interneurons, might contribute to the pathogenesis of social and sensory behavioral abnormalities.


Homeodomain Proteins , Mice, Knockout , Nerve Tissue Proteins , Plant Lectins , Social Behavior , Vibrissae , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Male , Mice, Inbred C57BL , Extracellular Matrix/metabolism , Interneurons/metabolism , Disease Models, Animal , Mice , Somatosensory Cortex/metabolism , Discrimination, Psychological/physiology , Receptors, N-Acetylglucosamine/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Brain/metabolism , Brain/pathology
20.
Sci Total Environ ; 922: 171291, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38423311

6-PPD quinone (6-PPDQ), an emerging environmental pollutant, is converted based on 6-PPD via ozonation. However, a systematic evaluation on possible neurotoxicity of long-term and low-dose 6-PPDQ exposure and the underlying mechanism remain unknown. In the present work, 0.1-10 µg/L 6-PPDQ was added to treat Caenorhabditis elegans for 4.5 days, with locomotion behavior, neuronal development, sensory perception behavior, neurotransmitter content, and levels of neurotransmission-related genes being the endpoints. 6-PPDQ exposure at 0.1-10 µg/L significantly reduced locomotion behavior, and that at 1-10 µg/L decreased sensory perception behavior in nematodes. Moreover, 6-PPDQ exposure at 10 µg/L notably induced damage to the development of dopaminergic, glutamatergic, serotonergic, and GABAergic neurons. Importantly, nematodes with chronic 6-PPDQ exposure at 10 µg/L were confirmed to suffer obviously decreased dopamine, serotonin, glutamate, dopamine, and GABA contents and altered neurotransmission-related gene expression. Meanwhile, the potential binding sites of 6-PPDQ and neurotransmitter synthesis-related proteins were further shown by molecular docking method. Lastly, Pearson's correlation analysis showed that locomotion behavior and sensory perception behavior were positively correlated with the dopaminergic, serotonergic, glutamatergic, and GABAergic neurotransmission. Consequently, 6-PPDQ exposure disturbed neurotransmitter transmission, while such changed molecular foundation for neurotransmitter transmission was related to 6-PPDQ toxicity induction. The present work sheds new lights on the mechanisms of 6-PPDQ and its possible neurotoxicity to organisms at environmentally relevant concentrations.


Caenorhabditis elegans , Dopamine , Animals , Molecular Docking Simulation , GABAergic Neurons/metabolism , Neurotransmitter Agents/metabolism , Benzoquinones/metabolism
...